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Singular coordinate sections of the conic umbilic 
catastrophes 

F J Wright?, G DangelmayrS and D LangS 
Institut fur Informationsverarbeitung, Universitat Tubingen, Kostlinstrape 6, D-7400 
Tubingen 1, West Germany 

Received 25 September 1981, in final form 14 April 1982 

Abstract. We study the intersection of a normal form for the conic umbilic catastrophe 
of general codimension K with planes in control space having all but two control variables 
set to zero, and display in a set of figures and a table the geometry in which strata of the 
bifurcation set intersect these planes, and the singularity types occurring on .them. Five 
distinct curve forms arise. We compare these sections with those of the cuspoids and 
discuss their occurrence as optical caustics. 

1. Introduction 

This paper analyses the way in which a normal form for the conic umbilic catastrophe 
of general codimension K (Thom 1972, Zeeman 1977, Poston and Stewart 1978, 
Gilmore 1981) is intersected by a particular orthogonal set of planes passing through 
the main singularity. These planes are specified by setting all but two of the control 
(unfolding) variables equal to zero; hence we call these sections singular coordinate 
sections. 

The applications we have in mind are primarily to caustics in optical (and other) 
wavefields: bifurcation sets of elementary catastrophes manifest themselves as caustics 
in the short-wavelength limit (Berry and Upstill 1980). However, the singular coordin- 
ate sections also provide a reference against which to check any more complete 
analysis of a specific catastrophe, and a possible basis from which to proceed. 

This paper is a sequel to a similar analysis of the infinite sequence of cuspoid 
catastrophes by Wright (1981), henceforth referred to as I. Callahan (1977) has 
discussed a related and complementary approach. 

The control space of a catastrophe is stratified into submanifolds (strata) within 
each of which the catastrophe displays a uniform type of singularity (or is non-singular). 
This leads to a hierarchical subordination structure of catastrophes. The union of all 
submanifolds in which the catastrophe is singular is the bifurcation set W. We 
determine the geometry of the intersection of each stratum of W, identified by its 
singularity type, with each singular coordinate plane. 

Special sections of a catastrophe are not necessarily stable in the way that the 
whole catastrophe is: familiar examples are the so-called beak-to-beak and lips events 
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(e.g. see Berry and Upstill 1980). The structural stability of sections of catastrophes 
is discussed in a separate paper (Wright and Dangelmayr 1982, henceforth referred 
to as 11), with particular reference to the stability of specific strata of the singular 
coordinate sections of the cuspoid and conic umbilic catastrophes. This stability 
analysis provides information about a neighbourhood of the plane of section, on which 
a more extensive perturbation analysis could be based. 

In the next section we introduce the conic umbilic catastrophes in more detail and 
discuss their subordination structure. All strata branch from the origin, so that a 
suitable choice of normal form results in the singular coordinate sections of strata 
having simple semi-algebraic expressions in terms of single monomials. This facilitates 
the simple classification given in 0 3 of the curve types in which W intersects singular 
coordinate planes. In Q 4 we describe how the equations of the intersections may be 
found, giving a specific example in appendix 1. Section 5 presents the results in a set 
of figures and a table, which are discussed in Q 6 and compared in 0 7 with the results 
found in I for the cuspoids. A discussion of potential physical applications, with 
particular reference to optics, constitutes the final section. 

2. The conic umbilic catastrophes 

The cuspoids and conic umbilics together constitute ‘almost all’ of the simple (non- 
modal) catastrophes (Arnol’d 1974, reviewed by GiImore 1981), which consist of: 

(a) cuspoids Ak, k 2 2-corank 1 ; 
(b) conic umbilics Dk, k 24-corank 2; 
(c) exceptional umbilics E6, E,, E8-corank 2. 

The symbolism is due to Arnol’d (1973), who classified singularities of complex 
function-germs. By catastrophe we shall mean the restriction to real variables of the 
unfolding of such a singularity, in which case the number of distinct singularities 
increases. However, we shall not distinguish dual catastrophes, which differ trivially 
by the overall sign of the function, since they have the same bifurcation geometry, 
and the distinction is irrelevant to optics. 

The name ‘conic umbilic’ was coined (by Poston and Stewart 1978, p118) because 
the sequence is based on Thom’s familiar elliptic, hyperbolic (D:) and parabolic (Ds) 
umbilics. It consists respectively of the higher elliptic and hyperbolic umbilics D i 
and D: with k even 3 4 ,  which are distinct catastrophes although they are equivalent 
under complex transformations, and the higher parabolic umbilics Dk with k odd 2 5 .  
For convenience, we group these catastrophes together as DE with k 2 4, and under- 
stand that only the + sign is to be used when k is odd. 

The subscript k is the multiplicity-the maximum number of critical points involved 
in the catastrophe. The codimension (k - 1) of the singularity gives the minimum 
number of control parameters necessary to fully unfold the degenerate critical point, 
and precisely this number of control variables appears in the normal form. Singularities 
of lower codimension appear in the unfolding of a given singularity, and in this way 
a catastrophe organises subordinate catastrophes. This subordination structure ties 
catastrophes together, as shown for the simple catastrophes in figure 1: a catastrophe 
organises all those which can be reached by following the arrows running from it. 
(For subordination diagrams distinguishing duals see, for example, Callahan (1978, 
19801.) 
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A,+ A 2 - A 3 + A , - A S + A 6 + - A 7 t A 8 c h i g h e r  cuspoids 

E,- €?+E8 

Figure 1. Subordination structure of the simple catastrophes. 

The choice of monomials in the cuspoid normal forms is unique, but this is not so 
for any other catastrophes. We take a set of normal forms which follow a consistent 
pattern through the whole sequence of higher conic umbilics. These are as given by 
Poston and Stewart (1978) and Callahan (1977), but the constants are chosen to 
simplify the subsequent algebra, as is normally done for the cuspoids. Following the 
notation of I, we represent the codimension-K conic umbilic catastrophe D$+l by 
the normal form 

where if K is even the + sign only is taken. We shall always use K( 3 3) specifically 
for the codimension of the catastrophe whose sections we are analysing. For each 
catastrophe, 4(s; c )  represents a family of functions of the state variables s = (sl, sz), 
parametrised by the control variables c = (c1, c2, .  . , CK). The bifurcation set 53 is 
the set of points c at which 4 has degenerate critical points. 

Note that for K = 3, (1) does not give the more symmetrical normal forms used 
by Thom (1972) for the first elliptic and hyperbolic umbilics, so that care is required 
in relating our results to the familiar bifurcation geometry of these catastrophes (in 
fact, our normal forms give more interesting singular sections). We return to this 
point in 0 6. 

3. Classification of the curve types 

The intersections occur in five basic forms of curve, which may be generated from a 
fundamental branch in the positive quadrant whose equation, taking ( x ,  y ) as standard 
coordinates in R2, is 

y = x = ,  a 2 1 ,  x 30. 

The end Ea is this curve alone, which ends at the origin. 
The bend Ba is the union of Ea and its reflection in the y axis. 
The cusp Ca is the union of Ea and its reflection in the x axis. 
The kink Ka is the union of Ea and its inversion in the origin. 
The hourglass H a  is the union of all the above forms-it has a branch in every 

quadrant. 
These five forms are illustrated in figure 2. 

Only rational values of a can occur, because the curves are all derived from 
polynomial normal forms. When a # 1 the fundamental branch has zero slope at the 
origin (in the limit as x -* 0 from above) and the five curve forms are distinct and all 
have continuous slope. When a = 1 it is convenient to retain the above notation, 
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Figure 2. The curve forms. The fundamental, labelled E, is y = x "  with x 3 0  and U A 

although the fundamental branch now has unit slope (everywhere). Then B1 and C1 
both represent a corner, with discontinuous slope at the origin, and H1 represents the 
intersection of two infinite straight lines. (El does not occur in our conic sections.) 

In all cases, the three sets {E}, {B, C, K} and {H} may be distinguished by homeotype 
since they have respectively 1, 2 and 4 branches emanating from the origin. If (Y 1 
then E, B, C, K may be distinguished by an index indicating the angle of rotation of 
the tangent along the length of the curve (see I), although care is needed with C. The 
curve forms cannot be classified by diffeotype, since two curves of the same form with 
different a are not diffeomorphic at the origin. 

The curves may occur in combination with the tangent at the origin (the x axis) 
and the normal at the origin (the y axis), which we indicate by suffixing the curve 
type by T and N respectively. Of course, when a = 1, T and N are not tangents or 
normals and are consequently not distinct, but we use the same notation for con- 
venience by regarding a = 1 as the limit a + 1. In this way we get the types ClT= B1N 
and HlTZHlN (equivalent by renaming axes), of which we use only the names C1T 
and H1T by convention. In fact, only ten of the possible combinations occur, namely 
ET; B, BT, BN, BTN; CT; KT, KTN; HT, HN. 

As one would expect, every curve has some kind of singularity at the origin, which 
is the main singularity of the catastrophe. Any curve which would otherwise be 
regular, such as B2 or K3, only occurs with T or N. Therefore, there is no significance 
in a being an integer (other than 1). We shall find that an isolated point and an 
isolated straight line may also occur. 

In the figures in § 5 ,  what we have here called the x axis may lie in either direction 
along either axis. The scaling of the axes is also arbitrary since we are concerned 
only with the 'shape' of the curves. Finally, let us define the form of a section to be 
its letter classiffication only (e.g. BTN), and its t ype  to be the full symbol complete 
with its a value (e.g. BaTN). 

4. Calculation of the singular coordinate sections of i3fl 

We describe here in general terms how to find the equation, in parametric form, of 
a singular coordinate section of 3, and hence the t ype  of curue appearing. We then 
explain how we find the type of singularity occurring at each point of 3 in the section; 
these singularities are subordinates of the catastrophe that we are analysing (see figure 
1). An example calculation appears in appendix 1. 

The bifurcation set 3 is the set of points in control space at which 4(s; c),  given 
by (l), has degenerate critical points. Denoting by di etc, the critical points of 
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(b satisfy 

~ * ( s ; c ) = 2 s 1 s 2 + c 3 s 1 + c 1 = 0 ,  

They are degenerate when the Hessian matrix H = {(bii} is singular, i.e. when 2Z 5 

det(H) = 0. Since 

411b; C)’2S2+C3, 412(s; c )  = 2s1, (3a, 6) 
K 

n = 4  
(b&; c )  = *(K - l)sf-2 + cn(n - 3)sF4, 

this requires 

(4) 

The equation of 93 is found, in principle, by eliminating s1 and s2 among (2a), 
(26) and (4). This is generally impossible, and even in the singular coordinate sections, 
where it is possible, it is much simpler, because of their multi-branched nature, to 
express the sections of 93 parametrically (in terms of s2) as in I. 

Note that (2b) and (4) depend on s1 only through s:, and are independent of c1. 
Writing (2a) as 

2 
K 

~ = ( 2 s z + c g )  * ( ( ~ - - l ) s f - ~ +  c cn(n-3)s!-4)-4s1 =o. ( n =4 

( ~ S Z + C ~ ) S ~  =-C1 ( 5 )  

we see that the equations for 93 are invariant under s1 + -sl, c1 + -cl; thus 93 is always 
symmetrical in CI. By squaring ( 5 )  we can eliminate s1 from (26) and (4) to give, 
respectively, 

2 
K 

n==4  
(2s2+C3)2( * s Y  + cnsz”-3 + c 2 )  = -c1, 

K 

n =4 
*[2(K + 1)sF-l +c3(K - 1 ) ~ 5 - ~ ] +  1 c,[2(n - l ) s y 3  +c3(n - 3 ) ~ ! - ~ ] + 4 ~ 2 = 0 .  

(66 1 
Equations (6) do not have any spurious solutions resulting from squaring (5 ) .  To find 
the singular (i, j )  section of 3, these equations are solved with all cn other than ci and 
c, set to zero, by considering three classes of sections: those with c1Z 0, c3 = 0, those 
with c1= 0, c3 # 0, and those with c1 = c3 = 0. The forms of the curves come from the 
relative signs which ci and ci may take, which determines the relative dispositions of 
the branches. The solutions express ci and ci as powers of s2 and the a -values come 
from their relative powers. 

At each point of these sections of 3 we can easily determine the multiplicity k 
of the singularity, which is the multiplicity of the root of (2) involved. The subordina- 
tion diagram then tells us that the singularity must be of type Ak or Dk, and these 
are distinguished by having respectively corank 1 or 2, i.e. the rank of H is respectively 
1 or 0. Therefore, if q511 = 412 = 422 = 0 the singularity is Dk, otherwise it is Ak. The 
only way of distinguishing D: and D; is by examining the local form of 4, as discussed, 
for example, by Poston and Stewart (1978) (see also 11). 
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Three non-trivial types of solution for ci and c j  arise: curve segments on which SI, 
s2 # 0; curve segments on which s1 = 0, s2 # 0; line segments and plane regions on 
which s1 = s2 = 0. These are mutually exclusive and always exclude the origin, where 
the solution of equations ( 6 )  for s is maximally degenerate. The distinction is needed 
for the local analysis necessary to distinguish Dr  and for the stability analysis discussed 
in 11. A more important distinction for our present purposes is whether or not s1 and 
s2 may take either sign, which corresponds to the simultaneous occurrence of sin- 
gularities at * s  with the same c-value (see appendix 1). Geometrically this corres- 
ponds to a self-intersection of W. 

5. Results 

We examine the singular ( i , j )  sections of the codimension-K conic umbilic normal 
form (l), in which all control variables c,, other than ci and ci, with K L i > j 2 1, are 
set to zero. Sections involving c1, c2 and c3  behave differently from the general section, 
partly because of the way these variables are singled out in the normal form (l), and 
partly because they are the coefficients of low powers of s1 and s2, so that the full 
singularity structure of the general section does not appear. Even sections involving 
c4 do not quite display the general forms, but we can incorporate these into the general 
classification by using A1 to represent a non-singular (Morse) function, and using D3 
as a synonym for A3. (Indeed, (1) with K = 2 is equivalent to the normal unfolding 
of the As singularity; see also Callahan (1977).) 

It suffices to distinguish seven classes of sections, which in ‘i,j-order’ are: (2, 1);  
(3, l) ;( i  2 4 ,  1);(3,2);(i >4,2);(i  2 4 , 3 ) ;  and (i, j )  with i > j  2 4 ,  the general section. 
We shall use e, h, p(i, j )  to mean respectively the (i, j )  section of an elliptic, hyperbolic 
or parabolic umbilic. We display the general structure of these classes of sections in 
figures 3-9, which show only the form of the intersections with W, but are valid for 

Figure 3. (2, 1) sections: ( a )  elliptic; (b) limiting hyperbolic and parabolic: V shape for 
K = 3 and parabola as K +W.  

la1 i b l  I C l  

Figure 4. (3 ,  1 )  sections: ( a )  elliptic; ( b )  hyperbolic; (c) parabolic. 
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t c1 

( b i t )  ( b i l l  ) 

Figure 5. (i 3 4 , l )  sections: ( a )  elliptic: ( b )  hyperbolic-broken branches included if i is 
even-(i) i <&K + 3), (ii) i = &K + 3), (iii) i >$(K + 3); (c) parabolic-(i) i <$(K + 3), (ii) 
i > $(K + 3). 

A K - i  c3 

4 c 2  / 

Figure 6. (3,2) sections: (a) elliptic; ( 6 )  hyperbolic; ( e )  parabolic. 

/ \ 
\ 

Figure 7. ( i  2 4 , 2 )  sections-sche- Figure 8. ( i  3 4 , 3 )  sections: (a) K, i both odd or both even; ( b )  
matic. One broken branch will occur otherwise. Upper signs for hyperbolic and parabolic, lower signs 
for K, i both odd, two otherwise (see for elliptic. 
table 1). 
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Figure 9. (i, j 2 4) section-schematic. One or two broken branches will occur, depending 
on i ,  j ,  K (see table 1). 

all K. The type of the intersections is given explicitly in table 1 for 3 S K  s 9, along 
with the general expressions for a which allow the table to be easily extended to any 
desired K. We always plot the ci axis horizontally and the cj axis vertically, with i > j .  
The figures are schematic and do not generally correspond to any particular a -values. 
The full branches always occur; the broken branches in some of the figures represent- 
ing a class of sections may occur, depending upon the particular section within the class. 

Each curve and line is labelled with the singularity (using Arnol’d’s notation) 
occurring on it which, from the subordination diagram in figure 1, is either Ak or D; 
with k < K  + 1. The origin is always a D$+l point, of course, but is only labelled as 

Table 1. Classification of curve types in singular (i, j)-sections. A + or - sign in column 
2 means that the classification relates only to D:,,, or Dive, respectively, as well as to Dodd. 

Name of catastrophe 
Codimension K 

i, i f a D: Ds Ds’ D7 D i  D9 DTo 
3 4 5 6 1 8 9 

2(K - 1) BZ1 B$ B2$ BY B22 BY B29 
K + l  

2 , l  + 
3 , l  - $ ( K + l )  H2T C$T H3T CZT H4T CZT H5T 
4, 1 + Greater of C!T H1T B!N HaN B$N H$N 

C2$T CaT C21T B y N  B2$N 
C$T H$T CZT H1T 

5 , l  + K + l  

C22T C$T C2zT 
6 , l  + 
7 , 1  + 
8 , l  + and C$T H$T 
9 , 1  + 2(K-i+2)  C2 $T 

2(K- i+2)  

K + l  

3 ,2  K - 1  B2T K3T B4T K5T B6T K7T B8T 

5 , 2  E22T K$T E2$T KST E*$ 
6,2 K - 1  C$T B2T C$T BtT 
7 , 2  K - i + 2  E23T KiT E22T 

CZT B P  
E24T 

8,2 
9 , 2  

492 C$T B$T C ~ T  B ~ T  C ~ T  B ~ T  
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E23T 

Table 1 continued. 

Name of catastrophe 
Codimension K 

i , j  f (I D: D5 D6' D7 Dsf Dg Dfo 
3 4 5 6 7 8 9 

493 BZTN K3TN B4TN KSTN B6TN K7TN 
573 t BZTN K3TN B4TN KSTN B6TN 
6 3  K - i + 2  plus B2TN K3TN B4TN KSTN 
7,3 plane BZTN K3TN B4TN 
8,3  BZTN K3TN 
9,3 BZTN I 
594 C$T B+T C ~ T  B ~ T  C ~ T  

E ~ Z T  K$T E ~ $ T  K ~ T  
794 
8,4 

I 
6 4  K - j + Z  plus 

CZT BZT CiT 
E23T KiT K - i + 2  plane 

994 I CZT 

I 

I 

K - j + 2  plus 
K - i + 2  plane 

I 

&7 K - j + Z  plus C$T B+T 
997 K - i + 2  plane E22T 

I 

K - j + 2  p i k  
9,8 K - i + Z  plane C;T 

such in figure 3(a),  since e(2,l)  is the only section in which the origin is the only 
singular point. In the higher-order sections ( i  3 5 ,  i 2 3) every point of the plane is 
singular, and we indicate this in table 1, and in the figures by putting the symbol for 
the singularity in a circle. For i B 5 ,  the singularity is of type DY!?('j), otherwise it is 
Ak (for some k) over the whole plane. Note that the (4,3) plane is not contained in 
94 because AI is non-singular, although a cursory glance at figure 8 might suggest 
that it is. 

The symbol AX represents the intersection of two Az-strata of 46, which is familiar 
in the swallowtail and first hyperbolic umbilic. The A; singularity involves two pairs 
of coincident critical points, and occurs in codimension 2, whereas four critical points 
coalesce generically only in codimension 3. No other self-intersections of 94 occur in 
singular coordinate sections of our normal forms. The symbol which actually appears 
in the figures is Ai2), which means that the curve may be either A2 or A;, depending 
on the particular section within the class. The two cases are distinguished in table 1 
by adding a superscript 2 to the curve-form letter if the curve is a self-intersection, 
e.g. E'. 
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The (2, 1) and (i 2 4 ,  1) sections of elliptic umbilics and the (3, 1) sections of 
hyperbolic umbilics possess no curved branch and so cannot be classified in table 1 .  
A + or - sign appearing in the column headed f means that for k even this section 
applies only to D l  (hyperbolic) or to D; (elliptic) respectively. The sequence of 
a-values follows a fairly clear pattern through table 1, except that our classification 
convention requires a 3 1. Consequently there is a reversal in the progression of 
a-values as a passes through 1, which happens only in the (i 2 4, 1) section of the 
table, and is accompanied by the sections changing from B a N  to C a T  and from H a N  
to HaT .  When a = 1, the naming convention is slightly ambiguous, as discussed in 9 3.  

6. Discussion of the results 

We expect the most significant groupings of sections to depend on whether they 
involve CI or c3, because these are the only controls multiplying powers of s1 in the 
normal form (1). Therefore, we expect the classes of sections (2, 1) and ( i  3 4 ,  1) not 
involving c3; (3 ,2 )  and ( i  3 4,3) not involving c l ;  ( i  2 4 , 2 )  and (i ,  j )  with i > j  2 4, not 
involving either c1 or c3, to be closely related. The figures and table 1 show that this 
is the case: (2,  1)  is as (i 2 4 ,  1) but without the T or N line along the c, axis; (3,2) is 
as ( i  b 4 ,3 )  but without the N line along the c, axis and without the plane of singularities 
which occurs for i 2 5 ;  and ( i  24,  2) is as the general section but without the plane 
of singularities. 

Self-consistency requires that each axis should always display the same singularity 
irrespective of the section in which it appears; that this is so is readily confirmed from 
the figures which show that every point of an axis, excluding the origin, displays the 
following singularity: 

c,, n 3 5 axis : C 1 , C - l  C 3  C‘4 

singularity : non-singular AK-I A3 Dn-1 

(the last case is by virtue of the axis lying in a plane of DjPl singularities if it is a cJ 
axis). One advantage of our analysis is that it finds all these axial lines which are 
essential parts of W, whether or not they are stable. It is very difficult to find unstable 
features numerically, as discussed further in I. 

It is instructive to relate our general classification to Thom’s familiar hyperbolic 
and elliptic umbilics D:, and to determine which of their characteristic features are 
also characteristic of the higher conic umbilics. Figure 3(a) shows that the isolated 
point at the origin of the ( 2 , l )  section is indeed a characteristic of all elliptic umbilics. 
However, figure 3(b)  together with table 1 shows that the characteristic corner of the 
(2, 1) section of Dd is peculiar to this catastrophe, and this section of all higher 
hyperbolic and parabolic umbilics has continuous slope. 

We note that ( 2 , l )  sections are the only sections not garnished with axial lines, 
related to which is the fact that these are the only sections in which a = 2(K - l) /(K + 1) 
is never an integer, other than 1 when K = 3-if it were then the curve would not be 
singular at the origin, as discussed in the penultimate paragraph of § 3. As K increases 
from 3 towards 00, a increases from 1 towards 2, thereby defining the two limiting 
curve types shown in figure 3(6) for the h, p(2 , l )  sections of B. The nature of the 
singular (2,  1) section of the general conic umbilic (including D3!), and especially the 
origin of the A,” curves, is admirably illustrated in figure 33 of Callahan (1977). (He 
also studies the general (2, 1) sections of D:, Ds and DZ.1 
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Stability of the intersections is discussed in detail in 11, but a few observations 
concerning stability are appropriate here. The hourglass curve in the ( 3 , l )  section 
of D i  results from cutting longitudinally through the cusped triangular cone shape of 
W, and apart from the origin its branches are therefore stable. The shape of the 
hourglass curve is the same as that of a beak-to-beak event, which occurs in a section 
tangent to a rib (cusped edge) with a particular configuration and is a special case of 
a cusp catastrophe, rather than a distinct type of singularity. The hourglass in the 
( 3 , l )  section of D i  may be regarded as a degenerate beak-to-beak, in which it 
coincides with a higher singularity, and in principle the (3,l) section of D: may be 
regarded as a degenerate lips event which is not visible. In fact, many of our singular 
sections may be regarded as such ‘degenerate concatenations’ (see also Callahan 1977). 

The A2 line along the c3 axis in the (3, 1) sections of Dd results from a tangency 
of the A2 stratum of 3 with the plane of section, and is consequently unstable. The 
global existence of this line is an artifact of our choice of normal forms-if the unfolding 
monomial s: in (1) is replaced by (s: +s;) to give the more symmetrical unfolding 
of D i  used by Thom (1972) and Berry et a1 (1979), and its analogue for D:, then this 
sheet of the A2 stratum curves out of the ( 3 , l )  plane away from the origin. In the 
(3,2) plane of Da, however, the A2 line along the c3 axis results from an intersection 
with 3, and is consequently stable. With the more symmetrical normal forms the Az 
line curves quadratically in the opposite direction to the quadratic A3 curve. The A3 
curve itself is completely unstable and small perturbations will unfold it into one or 
three Az curves, although it cannot disappear completely. 

Table 1 shows that E curves can only occur as self-intersections of W (A: sin- 
gularities), but in h(2 , l )  and h(i b 4 , l )  sections C and B curves also occur as self- 
intersections. Such self -intersection curves may be regarded as curves which have 
‘doubled back’ on themselves. This interpretation is consistent with the singularity 
type being A:, and with the alternations down some of the columns of table 1 between 
E’ and B, and between C2 or B2 and H as illustrated in figure 5 .  

Our results for K b 4  are completely consistent with those of Godwin (1971), 
Woodcock and Poston (1974) and Callahan (1977). 

7. Comparison with the cuspoids 

The singular coordinate sections of cuspoid catastrophes display a subset of the features 
displayed by the conics. Specifically, the following do not occur for the cuspoids: 
hourglass curves (H), isolated points, isolated axial lines and normal lines (N)-for 
the cuspoids axial lines occur only as tangents (T). The case CY = 1 does not occur for 
cuspoids, and for B, C and K the values of CY (which are always rational) are restricted 
to the forms even/odd, odd/even and odd/odd respectively. For the cuspoids, self- 
intersections occur only on E, and not on C or B; however, a cusp (C) can occur alone 
whereas for the conics it is always accompanied by the tangent (as CT). 

There is an extremely close analogy, which we investigate in detail in appendix 2, 
between the conic sections with c1 = c3 = 0 and the cuspoids. This is because with 
c1 = c3 = 0, if it were not for the term s:s2, the normal form (1) would be a cuspoid 
normal form (see also Callahan 1977). The (i a 4,2)  conic sections are analogous to 
the ( i  2 4 ,3 )  cuspoid sections, discussed in I, and the (i ,  j )  sections of the conics and 
cuspoids are analogous to each other for i > j 2 4 .  The D; points in the conic sections 
are analogous to the Ak points in the cuspoid sections. The only difference is that 
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the ( i  B 4,2) conic sections are not singular planes, whereas the ( i  3 4,3) cuspoid 
sections are A2 planes. In fact, in both the cuspoid and the conic singular sections, 
planes of singularities occur only if j 3 3.  

Consequently the general conic sections have exactly the same classifications as 
the cuspoid sections, so that the bottom of table 1 ( j  B 4) is equivalent to a reorganised 
version of the bottom left corner of table 2 of I (restricted to i > j  a 4, which implies 
K 3 5 ) .  With the particular choices of normal forms made here and in I, the equations 
of these matching sections are identical, except that elliptic sections are inverted in 
the origin1 (c + - c )  relative to cuspoid sections. 

8. Applications 

In physical applications singular coordinate sections are not quite as special as they 
appear. Any experimentally determined bifurcation sets will be blurred to some 
degree, either as an unavoidable consequence of the physics (diffraction blurring of 
optical caustics, thermal fluctuations, noise etc) or simply as a result of experimental 
error. This will have the effect of stabilising non-generic phenomena. Therefore one 
can expect to find singular sections, including their less stable features, to ‘within 
experimental error’. 

This is well illustrated by optical experiments. In a study of ‘optical caustics in 
the near-field from liquid drops’ Nye (1978) found typically ‘several tens of elliptic 
umbilic catastrophes’ which all focused in the same plane. In our notation this focal 
plane is the singular (2, 1) section of D i ,  which is completely unstable (see 11). Nye 
(1978, p 26) observes that: ‘The cusped triangle is a non-singular section of an elliptic 
umbilic, but its star-shaped diffraction pattern (Trinkaus and Drepper 1977; Berry, 
Nye and Wright 1979) is hard to distinguish from the pattern from a singular section; 
thus one has the erroneous impression that an elliptic umbilic singularity has already 
been formed.’ 

Using ‘liquid drops under gravity’ Nye (1979) has observed the diffraction patterns 
of caustics indistinguishable from singular (2, 1) sections of D: and Ds. These two 
can only be distinguished by very subtle details of their diffraction patterns, and one 
would imagine from Nye’s photographs (figures 4(d )  and 8(f)) that the caustics were 
both corners. In fact, as we have already remarked, only D: displays a corner (Bl) 
whereas Ds displays a Bg with continuous slope (as plotted in figure l ( b )  of I), although 
the difference is hard to see, 

As an illustration of optical applications of our classification, let us see to what 
extent it enables us to deduce that figure 8(f) of Nye (1979) is a singular (2, 1) section 
of Ds. The photograph is clearly close to some singular section. In principle, it is 
possible to observe a section arbitrarily close to any particular singular section. 
However, an empirical consequence of the symmetry of a typical experimental 
arrangement is that frequently the ‘optical axis’ or ‘focusing direction’ of the system 
coincides with a control space axis of the normal form, which implies that observed 
sections of the caustic are locally coordinate sections. This is implicit in much of 
catastrophe optics, and we assume it to be the case here. 

A section containing a plane of singularities could only appear on a screen if it 
were placed parallel to the beam, i.e. at glancing incidence, which is rarely the case. 
It is certainly not possible in Nye’s optical system, thereby immediately ruling out 
most sections of both the conics and the cuspoids. Noting that Nye’s photograph 
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displays no signs of T or N lines further rules out, among the conics and cuspoids, all 
but (2,l)  sections. In fact, it is well known in catastrophe optics that these are the 
most frequently observed sections of caustics (see, for example, Berry and Upstill 
1980). 

Let us assume that we know, perhaps from the general form of neighbouring 
sections, that we are dealing with a conic umbilic. The curve clearly has a close to 
1. The effects of small perturbations should show that the curve is completely stable, 
so it is Ba, not B2a. Then from table 1 the curve is most likely to be the B$ resulting 
from a (2, l )  section of Ds, since this catastrophe has the lowest possible codimension. 

This optical example shows that our catalogue of singular coordinate sections 
provides at least useful corroborative evidence for the assignment of sections of 
bifurcation sets. It also provides consistency checks on any more extensive studies of 
particular catastrophes, such as Godwin’s (1971) exhaustive study of Ds. 

For applications to optics, the next stage of this program is to evaluate the diffraction 
catastrophes for the singular coordinate sections, for which the present detailed study 
of the caustics is an essential precursor. However, it is most unlikely that a concise 
classification of the sort presented here would be possible for the diffraction patterns. 
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Appendix 1. An example calculation. 

As an illustration, let us consider the family of sections (i 2 4 ,  l), in some ways the 
most complicated. They display all features except a singular plane. Equations (6) 
become 

2 4s; ( f s y  + c.si-3) 1 2  = - c1 (Al.lu,  6) 

Since i a 4 ,  s 2 = 0  is a root of (Al.lb), and if cl=O it is also a root of (A1 .k ) .  
Therefore the ci axis is part of 93. From (2), the root also has s1 = 0, and has multiplicity 
(i-1). From (3), 411=412=0, and 422=0 unless i = 4 .  Therefore if i =4, the 
singularity is A3, if i 2 5 it is Di-l, i.e. it is a ‘generalised DiMl’ singularity where 
D3 = A3 as discussed in 4 5 .  (A singular plane would arise if s2 = 0 were a multiple 
root of (A1.lu) for all ci and ci.) 

Solving (Al . l )  for ci and c1 gives 
K+l c:=*4( K - i + 2  . ) s f + l .  
i - 1  E-1 (A1.2u,b) 

In the elliptic case K is odd, the lower sign applies and (A1.2b) has no non-trivial 
solutions-hence figure 5(u)  and the + sign in table 1. In the hyperbolic case K is 
again odd but the upper sign applies and (A1.2b) allows all c1 and s2.  Now if i is 
odd, ( A l . 2 ~ )  allows only ci s 0, giving only two branches which form a cusp or bend, 
but if i is even it allows all ci, giving four branches which form an hourglass curve. 
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The distinction between cusp and bend (or the orientation of the hourglass) depends 
on the slope at the origin, i.e. on the relative magnitudes of the powers of s2 in (A1.2). 
If 2(K - i + 2) > K  + 1, ci + 0 faster than c1 giving a bend. In the special case when 
2(K - i  +2) = K  + 1, i.e. i = i (K +3),  we have a corner (labelled C21T in table 1); 
otherwise we have a cusp. The exact orientation of the curves is shown in figure 5(b). 
When the curve changes from a cusp to a bend, the ci axis changes from a tangent 
to a normal. Note that in the cusp and bend cases both signs of s2 give the same 
point on the curve, making these curves self-intersections of B. 

The parabolic case has K even and takes the upper sign, so that (A1.26) allows 
only s 2 s 0 .  Consequently ( A 1 . 2 ~ )  gives only ci SO, as in figure 5(c). The result is 
like the hyperbolic case with odd i, but now s2 cannot take both signs, so this curve 
is not a self-intersection. 

The value of a is given by the greater of (K + 1)/2(K - i + 2) and 2(K - i + 2 ) / ( K  + 
1). On the curves, (2a) gives a 1 :: 1 relation between s1 and s2, and (A1.2) corresponds 
to a double root of (Al . la)  and hence of (2). The Hessian matrix H is non-zero, so 
we have a curve of A2 singularities. Therefore, when it is a self-intersection it is Ai, 
and both s1 and s2 change sign between the two intersecting sheets of B. Generally, 
when the expressions for ci and ci on a curve are even in s2 ,  then the curve lies in the 
A: stratum of B. 

Appendix 2. Relation between conic umbilic and cuspoid catastrophes. 

We remarked in § 7 on the close analogy between certain conic umbilic and cuspoid 
singular sections. Here we explore in a little more detail the analogous (K - 2 ) -  
dimensional subspaces (rather than just singular sections) of the universal unfoldings 
of D:+l and AK+1 having respectively c1 = c3 = 0 and c1 = c2  = 0. For convenience, 
let us define a slightly modified set of control variables for D t + l  by c; = f c 2  and 
c l  = kc, for n 34. Then from (1) we may write the normal form for this partial 
unfolding of Dg+l  as 

K 
s f / K +  n = 3  ~ , s ; - ~ / ( n - 2 ) ) .  

Its critical points satisfy 
K 

s1=0 s y +  c;s2”-3 = o  
n=3  

( A 2 . 1 ~ )  

or 

s2 = 0 s: *ci  = 0. (A2.16) 

Multiple critical points can only occur with s1 = 0, which is the basis of the analogy. 
We choose similar names for the variables in the partial unfolding of AK+I, whose 

normal form (as used in I) we may write as 
K 

n=3 
Q ( s ~ ; c ‘ ) = s ~ K + ~ / ( K + ~ ) +  1 cCs2”/n. 

Its critical points may then be written analogously as satisfying 

2 
K 

sF-l+ c i g - 3  = o  or s2  = O .  
n=3  

(A2.2u, b )  
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The structure of those critical points of #I and @ with s2 # 0, given respectively by 
( A 2 . 1 ~ )  and (A2.2a), is identical. If they coalesce (at s 2 # O )  they both produce 
cuspoid singularities of the same codimension. 

The critical points of 4 and Q, with s2 = 0 behave slightly differently: @ always 
has a singularity at s2 = 0, but if c2 = c ;  f 0 then 4 does not. Suppose c = 0 for all 
n <j ,  and ci # 0. Then if j > 3 the double root of (A2.26) merges with the root of 
( A 2 . 2 ~ )  at s2 = 0, giving in general an singularity of @. However, (A2.16) only 
has a double root if c ;  = 0, which merges with the root of (A2 .1~)  at sz = 0. If j = 4, 
q5 has an A3 singularity as does @, but if j > 4, has a Di-l singularity (since then 
#11 = 412 = 4 2 2  = 0) instead of the singularity displayed by @. 
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